The Many Facets of the Information-Disturbance Tradeoff in Quantum Theory

heisenberg-vs-demon
Heisenberg defeats Laplace’s demon!

Next Wednesday, I will be giving an invited lecture at the National Cheng Kung University in Tainan, Taiwan, about all that I’ve learnt concerning the information-disturbance tradeoff in quantum theory. Keeping a unified viewpoint, I will cover many aspects of the problem: from the difference between physical and stochastic reversibility, to qualitative “no information without disturbance” statements and quantitative balance equations, up to the two-observable approach à la Heisenberg.

Click the drawing above for the PDF.

Quantum uncertainties defeat Laplace’s demon

I recently gave a colloquium at the Department of Applied Mathematics of Hanyang University in Ansan, Korea, in which I tried to introduce the idea of incompatibility of quantum measurements to students that were not all perfectly fluent in quantum theory.

Incompatibility, in the form of uncertainty relations, is available in many flavours: statistical and dynamical, variance-based and entropy-based, state-dependent and state-independent… As I was asked to share the slides, I’m now making them publicly available (click on the cover below):

quantum-unc-cover

The mechanical hybris is defeated!

See also: Heisenberg’s principle, Shannon’s information, and nuclear (research) reactors